博客
关于我
【Lintcode】266. Expect Distance
阅读量:214 次
发布时间:2019-02-28

本文共 955 字,大约阅读时间需要 3 分钟。

题目地址:

有个人困在了一个山洞 A A A,从山洞 A A A出发有两条路,一条路走 x x x千米,会回到山洞 A A A,另一条路走 2 2 2千米,会到山洞 B B B;从山洞 B B B出发也有两条路,一条路走 y y y千米,会到山洞 A A A,另一条路走 z z z千米会到山洞的出口 C C C。问他走出山洞的期望路程。他在山洞选择哪条路走的概率都是 1 2 \frac{1}{2} 21

X X X是从 A A A走到出口的距离, Y Y Y是从 B B B走到出口的距离,由条件期望公式得: E [ X ] = 1 2 ( x + E [ X ] ) + 1 2 ( 2 + E [ Y ] ) E [ Y ] = 1 2 ( y + E [ X ] ) + 1 2 z E[X]=\frac{1}{2}(x+E[X])+\frac{1}{2}(2+E[Y])\\E[Y]=\frac{1}{2}(y+E[X])+\frac{1}{2}z E[X]=21(x+E[X])+21(2+E[Y])E[Y]=21(y+E[X])+21z计算得: E [ X ] = 2 x + y + z + 4 E[X]=2x+y+z+4 E[X]=2x+y+z+4代码如下:

public class Solution {       /**     * @param x: the distance from cave A to cave A.     * @param y: the distance from cave B to cave B.     * @param z: the distance from cave B to exit C.     * @return: return the expect distance to go out of the cave.     */    public int expectDistance(int x, int y, int z) {           // write your code here.        return 2 * x + y + z + 4;    }}

时空复杂度 O ( 1 ) O(1) O(1)

转载地址:http://txcs.baihongyu.com/

你可能感兴趣的文章
Nacos Derby 远程命令执行漏洞(QVD-2024-26473)
查看>>
Nacos 与 Eureka、Zookeeper 和 Consul 等其他注册中心的区别
查看>>
Nacos 单机集群搭建及常用生产环境配置 | Spring Cloud 3
查看>>
Nacos 启动报错[db-load-error]load jdbc.properties error
查看>>
Nacos 报Statement cancelled due to timeout or client request
查看>>
Nacos 注册服务源码分析
查看>>
Nacos 融合 Spring Cloud,成为注册配置中心
查看>>
Nacos-注册中心
查看>>
Nacos-配置中心
查看>>
Nacos2.X 源码分析:为订阅方推送、服务健康检查、集群数据同步、grpc客户端服务端初始化
查看>>
Nacos2.X 配置中心源码分析:客户端如何拉取配置、服务端配置发布客户端监听机制
查看>>
Nacos2.X源码分析:服务注册、服务发现流程
查看>>
NacosClient客户端搭建,微服务注册进nacos
查看>>
Nacos中使用ribbon
查看>>
Nacos使用OpenFeign
查看>>
Nacos使用Ribbon
查看>>
Nacos做注册中心使用
查看>>
Nacos做配置中心使用
查看>>
Nacos入门过程的坑--获取不到配置的值
查看>>
Nacos原理
查看>>