博客
关于我
【Lintcode】266. Expect Distance
阅读量:214 次
发布时间:2019-02-28

本文共 304 字,大约阅读时间需要 1 分钟。

从山洞A出发,有两条路。一条路走x千米,回到A;另一条路走2千米,到达B。从B出发,也有两条路。一条路走y千米,回到A;另一条路走z千米,到达出口C。我们需要计算从A出发走出C的期望路程。

设E[X]为从A出发走出C的期望路程,E[Y]为从B出发走出C的期望路程。根据条件期望公式,可以建立以下方程:

  • 从A出发:E[X] = 1/2 (x + E[X]) + 1/2 (2 + E[Y])

  • 从B出发:E[Y] = 1/2 (y + E[X]) + 1/2 z

  • 通过解这两个方程,可以得到:

    E[X] = 2x + y + z + 4

    因此,从山洞A出发走出C的期望路程为:

    2x + y + z + 4 千米

    转载地址:http://txcs.baihongyu.com/

    你可能感兴趣的文章
    NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
    查看>>
    numpy 或 scipy 有哪些可能的计算可以返回 NaN?
    查看>>
    numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
    查看>>
    numpy 数组与矩阵的乘法理解
    查看>>
    NumPy 数组拼接方法-ChatGPT4o作答
    查看>>
    numpy 用法
    查看>>
    Numpy 科学计算库详解
    查看>>
    Numpy.fft.fft和numpy.fft.fftfreq有什么不同
    查看>>
    numpy.linalg.norm(求范数)
    查看>>
    Numpy.ndarray对象不可调用
    查看>>
    Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
    查看>>
    Numpy:按多个条件过滤行?
    查看>>
    Numpy:条件总和
    查看>>
    numpy、cv2等操作图片基本操作
    查看>>
    numpy中的argsort的用法
    查看>>
    NumPy中的精度:比较数字时的问题
    查看>>
    numpy判断对应位置是否相等,all、any的使用
    查看>>
    Numpy多项式.Polynomial.fit()给出的系数与多项式.Polyfit()不同
    查看>>
    Numpy如何使用np.umprod重写range函数中i的python
    查看>>
    numpy学习笔记3-array切片
    查看>>